
Quantum Field Theory II

Set 3: solutions

Exercise 1

• We compute the conserved momentum Pµ, recalling that the photon field can be written in Fourier space
as:

Aµ(x) =

∫
dΩk⃗

[
aµ(k⃗, t) + a†µ(−k⃗, t)

]
eik⃗·x⃗.

From the Gupta-Bleuler Lagrangian we get T 0ν = −∂0Aρ∂νAρ + g0ν

2 ∂αAρ∂αAρ. Let’s first focus on the
energy, which receives contribution from both terms:

P0 =
1

2

∫
d3x(−∂0Aρ∂0Aρ + ∂iAρ∂iAρ) =∫

dΩq⃗
q0

4

[
aρ(−q⃗, t)aρ(q⃗, t)− aρ(−q⃗, t)aρ†(−q⃗, t)− a†ρ(q⃗, t)a

ρ(q⃗, t) + a†ρ(q⃗, t)a
ρ†(−q⃗, t)

]
+∫

dΩq⃗
qiqi
4q0

[
aρ(−q⃗, t)aρ(q⃗, t) + aρ(−q⃗, t)aρ†(−q⃗, t) + a†ρ(q⃗, t)a

ρ(q⃗, t) + a†ρ(q⃗, t)a
ρ†(−q⃗, t)

]
=

−
∫

dΩq⃗ q0 a†ν(q⃗, t)a
ν(q⃗, t),

where we have used qiqi = −qiqi = −q20 and dropped infinite constants as usual. For the spatial components,
only the first term in the energy-momentum tensor gives a non vanishing contribution and we have:

P i =

∫
d3x(−∂0Aρ∂iAρ) =∫

dΩq⃗
qi

2

[
aρ(−q⃗, t)aρ(q⃗, t) + aρ(−q⃗, t)aρ†(−q⃗, t)− a†ρ(q⃗, t)a

ρ(q⃗, t)− a†ρ(q⃗, t)a
ρ†(−q⃗, t)

]
=

−
∫

dΩq⃗ qi a†ν(q⃗, t)a
ν(q⃗, t),

where we have noticed that two of the four terms vanish by antisymmetry for q⃗ → −q⃗. Thus finally:

Pµ = −
∫

dΩk⃗ kµa
†
ν(k⃗)a

ν(k⃗).

Note that the sign is correct, since for the transverse components a⊥ρ there is a +. Note also that Pµ is
independent of time, so it is without loss of generality that we dropped the symbol t in last equation.

• When we deal with the quantization of massless vectors we have to define the physical states of the theory
and in addition the physical observables. These can be defined as all the operators O that, applied to a
physical state, still give a physical state. This translates into a condition involving the commutator [O,L],
where L ≡ qρaρ(q). Indeed:

L|phys⟩ = 0, O|phys⟩ = |s⟩,
L|s⟩ = LO|phys⟩ = [L,O]|phys⟩+OL|phys⟩ = [L,O]|phys⟩

If we want |s⟩ to be a physical state we don’t need to impose the vanishing of the commutator: is sufficient
to require:

[L,O] ∼ L .

We want to show that this is the case for the momentum Pν =
∫
d3x T0ν , the Noether charge associated to

translations. Since Pν is a Noether charge we know that it can be regarded as the generator of translations,
therefore we expect to find [Pµ, L] ∼ ∂µL.



Computing explicitly the commutator using the previous result for the momentum we find,

[Pµ, L(q⃗)] = −
∫

dΩk⃗ kµq
ρ
[
a†ν(k⃗), aρ(q⃗)

]
aν(k⃗) = −

∫
d3k kµq

ρaρ(k⃗)δ
3(k⃗ − q⃗) = −qµq

ρaρ(q⃗) = −qµL(q⃗).

Then, defining L(q) = L(q⃗)e−iq0t, we get:

L(x) = ∂µA−
µ (x) =

∫
dΩq⃗ e−iqxL(q⃗) =⇒ [L(x), Pν ] = i∂νL(x).

Exercise 2

The EOM is:

□Aν − (1− ξ)∂ν∂µA
µ = −Jν

which can be cast in the form:
ΠνµA

µ(x) = −Jν(x)

where:
Πµν ≡ (□ηµν − (1− ξ)∂ν∂µ)

One can solve formally for Aµ in terms of (Π−1)µν :

Aµ(x) = −(Π−1)µνJν(x).

At this point it is more convenient (but not compulsory) to work in momentum space:

Ãµ(k) = −
(
Π̃−1

)µν

J̃ν(x)

where:

Π̃νµ = k2
(
ηνµ − (1− ξ)

kνkµ
k2

)
.

In order to find
(
Π̃−1

)µν

, it is useful to notice that Π̃νµ can be split into a sum of orthogonal projectors Pµν
L ,

Pµν
T :

Pµν
L =

kµkν

k2
, Pµν

T = ηµν − kµkν

k2

(PT )
µ
α(PT )

αν = (PT )
µν , (PL)

µ
α(PL)

αν = (PL)
µν , (PL)

µ
α(PT )

αν = 0 , (PL)
µν + (PT )

µν = ηµν

Π̃νµ = k2(PT )νµ + k2ξ(PL)νµ.

Therefore, it is easy to check that
(
Π̃−1

)µν

is simply given by the following expression:

(
Π̃−1

)µν

=
1

k2
(PT )

µν +
1

k2
1

ξ
(PL)

µν =
1

k2

(
ηµν +

1− ξ

ξ
kµkν

)
.

For ξ = 0, this expression is not well defined. This is expected, because in the presence of gauge-invariance the
longitudinal part of Aµ is not physical, therefore it cannot be determined from the EOM.

The choice ξ = 1 appears particularly simple: (
Π̃−1

)µν

=
1

k2
ηµν

The Green function of the theory in momentum space is given by1

G̃µν(k) = ηµν
1

(2π)3
1

k2

1The factor (2π)−3 is conventional.
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In order to find its expression in coordinate space, one has to take its anti Fourier-transform

Gµν(x) = ηµν
1

(2π)3

∫
d4ke−ikx 1

k2
= ηµν

1

(2π)3

∫
dk0 d3k e−ik0t+ik⃗⃗̇x 1

k20 − |⃗k|2

The results depend on the convention used to go around the poles at k0 = ±|⃗k| in the complex k0-plane.

Going above both poles corresponds to the retarded Green function Gµν
R . Indeed, for t < 0, the e−ik0t factor

is exponentially suppressed for Im k0 > 0, therefore one can apply the Cauchy theorem for a closed integration
contour contained in the upper complex plane. This does not embrace any pole, therefore the result of the
integration is 0. Conversely, for t > 0, the closed contour goes in the lower half plane, and it contains both poles.
By the Cauchy theorem, the result of the integration is:

Gµν
R (x) = ηµν

∫
dk0d3k e−ik0t+ik⃗⃗̇x 1

k20 − |⃗k|2
= ηµνθ(t)

1

(2π)3

∫
d3k 2πi

1

2|⃗k|
eik⃗⃗̇x

(
ei|⃗k|t − e−i|⃗k|t

)
The integration in d3k can be performed by going to polar coordinates as usual:

Gµν
R (x) = ηµνθ(t)

i

4π

∫ ∞

0

d|⃗k|
∫ 1

−1

d cos θ |⃗k|ei|⃗k|r cos θ
(
ei|⃗k|t − e−i|⃗k|t

)
=

= ηµνθ(t)
1

4πr

∫ ∞

0

d|⃗k|
(
ei|⃗k|r − e−i|⃗k|r

)(
ei|⃗k|t − e−i|⃗k|t

)
=

= −ηµνθ(t)
1

8πr

∫ ∞

−∞
d|⃗k|

(
ei|⃗k|(t−r) + e−i|⃗k|(t−r)

)
Where in the last passage we omitted terms that would give rise to δ(t + r), which is 0 because t + r > 0. The
final result is:

Gµν
R (x) = −ηµνθ(t)

1

4πr
δ(t− r)

Instead, the Feynman propagation is defined by the prescription k2 → k2 + iϵ for ϵ → 0+. This corresponds to
going above the pole at k0 = |⃗k| and below the pole at k0 = −|⃗k|. Indeed:

k20 − |⃗k|2 + iϵ ∼

{
(k0 + iϵ)2 − |⃗k|2 , k0 > 0

(k0 − iϵ)2 − |⃗k|2 , k0 < 0

Therefore, for t > 0 (t < 0) the closed contour embraces the pole at k0 = |⃗k| (k0 = −|⃗k|). Thus:

Gµν
F (x) = −ηµν

2πi

(2π)3
θ(t)

∫
d3k

1

2|⃗k|
e−i|⃗k|t+ik⃗⃗̇x − ηµν

2πi

(2π)3
θ(−t)

∫
d3k

1

2|⃗k|
ei|⃗k|t+ik⃗⃗̇x

The Feynman prescription therefore implies the propagation of positive frequency in the future and negative
frequencies in the past. It will be useful in the formalism of Feynman diagrams used in the perturbation theory
for QFT. Performing the integration over angular variables one arrives at

Gµν
F (x) =

−iηµν

2πr

∫ ∞

0

d|⃗k| sin(|⃗k|r)
(
θ(t)e−i|⃗k|t + θ(−t)ei|⃗k|t

)
.

Making use of the formulae,

1

2i

∫ ∞

0

[
eik|(r−t) − e−ik(r+t)

]
= lim

ϵ→0

r

r2 − t2 + 2iϵt
=

r

r2 − t2
− rπi · sgn(t)δ(t2 − r2) ,

1

2i

∫ ∞

0

[
eik(r+t) − e−ik(r−t)

]
= lim

ϵ→0

r

r2 − t2 − 2iϵt
=

r

r2 − t2
+ rπi · sgn(t)δ(t2 − r2) ,

one obtains the final expression for the Feynman propagator in the ξ = 1 gauge,

Gµν
F (x) =

iηµν

2π(t2 − r2)
− ηµν

2
δ(t2 − r2) .
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Exercise 3 (optional exercise)

• We consider a completely anti-symmetric field Fµνρ and want to decompose it into a direct sum of irreducible
representations of the Lorentz group. We will do that in two ways.

The most straightforward way consist in decomposing the tensor into the product of spinor representations
of the Lorentz group, the

(
1
2 , 0

)
and the

(
0, 1

2

)
2. We recall that the vector representation ( Vµ) of Lorentz

is the
(
1
2 ,

1
2

)
. We can therefore rewrite it in tensor notation as Vȧa, where ȧ transforms under the left and a

transforms under the right spinorial representation.

We can now do the same with our tensor:

Fµνρ → Fȧaḃbċc (1)

where we assume antisymmetry under the simultaneous exchange of ȧa and ḃb or ċc.

Decomposing the tensor in irreducible representations is now simply a matter of decomposing the tensor
into symmetric and antisymmetric part for both the dotted and undotted indices. This is done using the
invariant antisymmetric tensors ϵab and ϵȧḃ. It is simple to show that only one combination respects the
antisymmetric properties of Fµνρ, namely

Fȧaḃbċc = δabϵȧḃF̃ċc − δacϵȧċF̃ḃb + δbcϵḃċF̃ȧa (2)

Therefore the anti-symmetric field Fµνρ transforms under the irreducible
(
1
2 ,

1
2

)
representation.

This result could habe been found more directly by using only vector indices and writting the tensor in terms
of its dual F̃µ, which transforms under the

(
1
2 ,

1
2

)
:

Fµνρ =
1

6
ϵµνρσF̃

σ (3)

• The equations of motion are
∂µF

µνρ = 0 (4)

• In complete analogy with the standard maxwell case, the antisymmetry of F implies a trivial conservation
law:

∂µϵµνρσF
νρσ = 0, or equivalently ∂µF̃

µ = 0 (5)

This is the analogue of the homogeneous Maxwell equations for a 2-form field. In Maxwell’s electrodynamics
without matter, the theory is completely equivalent under exchange of the electric field and the magnetic
field. This is the duality between the standard picture where we define Fµν = ∂[µAν] and the magnetic

picture where we define F̃µν = ∂[µÃν]. Going from one picture to the other implies exchanging the equations
of motions and the Bianchi identities. The equivalence is broken when adding matter which enables to
distinguish between electric and magnetic charges. In the case of the 2-form, the two pictures are:

Fµνρ(A) = ∂[µAνρ], and F̃µ = ∂µϕ̃ (6)

This expression for F̃ is imposed by the equations of motion. In this case, the dual gauge field is simply a
scalar field. In the next question we will see that this is not incompatible with the fact that they describe
the same system.

• We can now determine the degrees of freedom. In the standard Maxwell case, even though the gauge field
Aµ has four components, we only have two dynamical degrees of freedom. One of the components of Aµ is
fixed by Gauss law ∂iF

i0 = 0, which is a first order differential equation and therefore only a constraint.
Finally one component of Aµ is unphysical/redundant because of the gauge invariance of the theory.

On the other hand, the 2-form gauge field Aµν is antisymmetric and has therefore six independent compo-
nents. We however have 3 Gauss laws ∂iF

ij0 = 0, where j = 1, 2 or 3, reducing the number of degrees of
freedom to 3, by fixing the values of A0j . Moreover, we lose 2 additional degrees of freedom from the gauge
part of the field

Aµν → Aµν + 2∂[µων]. (7)

2Recall that the double-cover of the Lorentz group is given by SL(2,C). Therefore the fundamental representation of SL(2,C),
namely the

(
1
2
, 0

)
is a representation of Lorentz.
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One needs to be careful here. Because of the constraints from the Gauss law, ω0 is already fixed and does
not reduce the degrees of freedom. Moreover the longitudinal component of ω, does not contribute. Indeed,
if ωµ(x) = ∂µα(x), for any continuous function α, Aµν is not modified. Therefore imposing a gauge only
further reduces the number of degrees of freedom to one. This is in agreement with the dual picture where
the field strength is a vector and therefore the gauge field is only a scalar. We see here that even though in
one case the theory is described using a 2-form Aµν and in the other it is described by a single scalar ϕ̃, the
number of dynamical fields is the same, and the theories describe the same physics.

• We can rewrite the equations of motion and the Bianchi identities respectively as:

∂µϵ
µνρσF̃σ = 0, ∂µF̃

µ = 0 (8)

The equations of motion are now trivial equations following from the definition of F̃ , while the Bianchi
identity becomes the equation of motion for the field ϕ. Indeed the Lagrangian can be rewritten as

L = −1

2
F̃µ(ϕ)F̃µ(ϕ) = −1

2
∂µϕ∂

µϕ. (9)

We recognize here that the theory is actually simply the theory of a free massless scalar field.

Formalities on the use of ∇−2

Consider as an example the Coulomb condition ∇⃗ · A⃗ = 0, and the definition of the electric field E⃗ = −∇⃗A0−∂tA⃗.
Gauss law ∇⃗ · E⃗ = ρ impiles −∇2A0 − ∂t(∇⃗ · A⃗) = −∇2A0 = ρ in Coulomb gauge. The formal solution to this
equation is A0 = −∇−2ρ, so by explicitly finding A0 we will become more familiar with the meaning and the
implications of the operator ∇−2 on the right hand side.
Let’s first introduce the Green function G(x⃗) for the Laplace operator, defined implicitly by the equation

∇2
(x)G(x⃗− y⃗) = δ(x⃗− y⃗),

where the subscript (x) means that derivatives are taken with respect to x⃗. Once the Green function is known,
the equation for A0 is simply solved by expressing this field as a convolution of the Green function with the charge
density, namely

A0(x⃗) = −
∫

d3y G(x⃗− y⃗)ρ(y⃗) ≡ −[G ∗ ρ](x⃗),

as it can be easily proved by applying the laplacian to both sides. The Green function for the Laplace operator in
three (spatial) dimensions is

G(x⃗− y⃗) = − 1

4π|x⃗− y⃗|
,

as it can be proved again by applying the laplacian to both sides (recall that ∇2
(x) = ∇2

(x−y): for x⃗ ̸= y⃗ one can

explicitly compute ∇2
(x)

1
|x⃗| getting zero, since 1

|x⃗| is the harmonic function in 3 spatial dimensions; for x⃗ = y⃗ it is

convenient to pass to Fourier space, and the factor −1/(4π) comes out in a straightforward way).
Thus the solution for A0 is

A0(x⃗) =

∫
d3y

ρ(y⃗)

4π|x⃗− y⃗|
,

which is the well-known definition of the electrostatic potential in classical physics. Notice that the presence of a
negative power of ∇ introduces a non-locality in the solution, meaning that the field A0, evaluated at x⃗, receives
contribution from every point y⃗ ̸= x⃗ in which the charge density is present. Conversely, if the formal solution A0

had involved only positive powers of derivative operators, no non-locality would have arisen.
Let’s now express the operator ∇−2 in Fourier space. This space is well suited for solving the equation for A0,
since the transform (F) of any convolution product is an algebraic product of transforms:

F [A0] ≡ Ã0(p⃗) ≡
∫

d3x e−ip⃗·x⃗A0(x⃗) = −F [G ∗ ρ] = −
∫

d3x d3y e−ip⃗·x⃗G(x⃗− y⃗)ρ(y⃗)

= −
∫

d3we−ip⃗·w⃗G(w⃗)

∫
d3ye−ip⃗·y⃗ρ(y⃗) = −G̃(p⃗)ρ̃(p⃗),
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where we have renamed w⃗ ≡ x⃗ − y⃗. Since the Fourier transform of G(w⃗) ≡ − 1
4π|w⃗| is G̃(p⃗) = − 1

|p⃗|2 , then the

equation for A0, read in Fourier space, becomes Ã0(p⃗) = |p⃗|−2ρ̃(p⃗), and the following the general identity holds:

F [∇−2f ] ≡
∫

d3x e−ip⃗·x⃗∇−2f(x⃗) = −|p⃗|−2f̃(p⃗). (10)

One more comment on locality: the inverse Fourier transform of the function |p⃗|2, namely
∫

d3p
(2π)3 |p⃗|

2eip⃗·x⃗ is

read in coordinate space as the distribution −∇2δ3(x⃗), and similarly for any positive power (and, in general,
any polynomial) of the gradient operator. Such a polynomial, convoluted with any test function, gives a sum
(with finitely many terms) of derivatives of the test function evaluated in x⃗ = 0, which states the locality of the
expression. Conversely, functions that are written in momentum space as infinite Taylor series of p, or that are
non-analytical in p, give rise in general to non trivial convolutions, i.e. to integrals that receive contributions from
different points of the three-space, as we have seen in our electrostatic example.

As an application of identity (10), one can consider the operator P⊥
ij ≡ (δij − ∂i∂j∇−2) that projects a generic

vector field V i(x⃗) onto its divergenceless part V i
⊥(x⃗) ≡ P⊥

ij V
j(x⃗), satisfying ∇⃗ · V⃗⊥(x⃗) = 0.

Recall first that the Fourier transform of the function eiq⃗·x⃗ is

F [exp] ≡
∫

d3x e−ip⃗·x⃗eiq⃗·x⃗ = (2π)3δ3(p⃗− q⃗).

Using now (10), one has

∇−2eiq⃗·x⃗ =

∫
d3p

(2π)3
eip⃗·x⃗F [∇−2 exp] =

∫
d3p

(2π)3
eip⃗·x⃗(−|p⃗|−2)(2π)3δ3(p⃗− q⃗) = −|q⃗|−2eip⃗·x⃗,

thus

V i
⊥(x⃗) ≡

∫
d3p

(2π)3
eip⃗·x⃗Ṽ i

⊥(p⃗) =

∫
d3p

(2π)3
Ṽ j(p⃗)(δij − ∂i∂j∇−2)eip⃗·x⃗ =

∫
d3p

(2π)3
Ṽ j(p⃗)(δij − pipj |p⃗|−2)eip⃗·x⃗

and the projector in Fourier space is then

P̃⊥
ij ≡ δij −

pipj

|p⃗|2
,

Ṽ i
⊥(p⃗) = P⊥

ij Ṽ
j(p⃗).

This has now an evident interpretation: given a vectorial operator ⃗̃V (p⃗), function of some momentum p⃗, P̃⊥
ij

projects the vector on the subspace transverse w.r.t the direction of motion, p⃗ · ⃗̃V i
⊥(p⃗) = 0.
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